INTERNSHIP REPORT :
ABSTRACT INTERPRETATION, CONTRACTS
AND OBJECT INVARIANTS

rosoft:

FResearch 8

Michael Monerau

July - October 2009

Directed by Manuel Fahndrich
at Microsoft Research, Redmond, WA, USA

Microsoft*

Research

Table des matiéres

[1 The internship|

[1.1 Acknowledgements| o Lo
1.2 Microsoft Researchl

1.3 My curriculum|o

NN NN

B Scientifi |

2.2.1 Thesetting] e
[2.2.2 Storing inferred contracts| Lo Lo Lo
2.2.3 Contracts utility]o o
2.2.4 Contracts soundness|o Lo

2.3 Object invariants| L e e
3.1 Getting object invariants inference in Clousot|
[2.3.2 readonly fields analysis|o oo oo oL oo 1

O © O © 0O ULOULU R WWwW

B i : 1 Tusion

-
N

1 The internship

1.1 Acknowledgements

I would like to thank Manuel Fahndrich for his mentoring during this internship, his availibilty
and enthousiasm. It was very motivating and pleasant. I would also like to thank Francesco
Logozzo for his relentless help and availibity. On a more general ground, thanks to all the people
I chatted or worked with at MSR and the other interns (hey Jean!). They have all contributed
to make my summer an awesome summer, it was really enjoyable to work with this team. And I
would especially like to thank Radhia and Patrick Cousot for their always pleasant and interesting
discussions.

1.2 Microsoft Research

Microsoft is the big software company we all know, based in Redmond, WA, USA. The firm
has around 100 000 Full-Time Employees worldwide. There are more than 30 000 FTE’s on the
sole Redmond campus, which is thus the core of the company.

The main goal of Microsoft is to deliver quality software to enable easy, natural and efficient
use of computers.

To achieve this goal, it is critical to stay at the leading edge of innovation and research is
thus very important. That’s why Microsoft features an important Research section. Microsoft Re-
search brings together almost 1000 researches in various fields including programming languages,
computer vision, hardware, servers, cryptography, theory, etc.

Microsoft Research funding is comfortable and allows for a pleasant and mellow research.

I was in the RiSE team (Research in Software Engineering), and more precisely in the “Pro-
gramming Languages and Analysis” team, managed by Manuel Fahndrich
(http ://research.microsoft.com/en-us/groups/pla).

1.3 My curriculum

I have a Bachelor of Science and a Master of Science in Mathematics & Computer Science
from the Ecole Normale Supérieure in Paris, France. I also have the agrégation in Mathematics,
minor Computer Science.

During this 2009-2010 year, I decided to delay the last year of my studies to do some research
in abstract interpretation and this internship at Microsoft is the first step of this project.

2 Scientific contents

2.1 CodeContracts & Clousot
2.1.1 The workflow

CodeContracts is a project whose goal is to deliver the programmer with comprehensive tools
to check his code both statically and dynamically.

The static analysis part is based upon abstract interpretation and applies to any compiled
.NET binary. It means that the analysis can be achieved on any library or program coming from
any one of the NET languages (C#, Managed C++, VB .NET, ...).

Indeed, the .NET workflow is such that the source code can be written in any .NET language
and then the compiler transforms that code into an intermediate language “MSIL” which can
be seen as assembly code for the .NET virtual machine. One of the major advantages of MSIL
over classic assembly code is that it keeps some interesting semantic informations such as class
definitions, types, and so on.

Executable

Clousot

FI1GURE 1 — The .NET Framework and Clousot analysis

That’s why performing the analysis at the MSIL level is so interesting : it allows to treat any
.NET language, and we have a post-compilation code (which frees us from verifying the compiler
itself). Moreover, there are already some tools out to parse MSIL.

The analysis can be broken down into different pieces.

First, when the programmer writes some code, a .NET library allows the programmer to
insert some annotations into the code (as genuine code, not comments, which are thus checked
semantically) : pre-conditions and post-conditions on methods, object invariants, assertions, as-
sumptions (see figure [5[for a quick example).

After compilation takes place (using the usual compiler for the target language) and if Co-
deContracts is switched on, then the annotations are propagated through the MSIL assembly to

allow for a later static and/or dynamic analysis.

Clousot, the static analyzer, then comes into play : it runs several analyzes on the code (non-
null checks, non out-of-bounds array accesses, etc.) taking into account the annotations from the
programmer and automatically inferring a whole lot of others. Then it outputs warnings (resp.
errors) if bugs are possible (resp. present).

X.dIl (Comingfrom your code,
. or from another place,
Actual code .NET Framework,...)

Run Clousot...

"

X.Contracts.dll
Only user provided contracts

Warning & Detected errors

Can be fed to other analyses
where X is referenced

\'/

FI1GURE 2 — Clousot Workflow, the static analyzer is the core of CodeContracts

The whole static analysis relies on abstract interpretation, we thus have soundness for granted
(expect if there are human-made bugs in the analyzer) but it is possible to have some false alarms
because of a lack of precision in the approximation during the inference.

If runtime analysis is switched on, then all the assertions, pre and post conditions are checked
live at execution and throw an exception if they are not valid.

2.1.2 My work in there

I have done two projects during my internship. The first one aimed at making the contracts
inferred during an analysis reusable, and the second one was about infering object invariants.
Let’s see that in more detail.

15t project : if an assembly A references another assembly B, one would like to be able to
import B’s contracts into A analysis. Before my internship, the only contracts you could import
in such a way were those explicitly written by the programmer in B’s source code because all
the inferred one lived only in memory during B’s analysis.

The goal was thus to make the contracts inferred during B’s analysis available to A. As
we may expect, the automatic inference is far more verbose than what could be written by
hand. Such a feature could especially be very useful to generate contracts for standard system
assemblies : one can launch an analysis of those system DLLs and then reuse the results on all
future assemblies that depend on them.

(Coming from your code,

Xdll or from another place,

Actual code NET Framework,...)
Z 1
Clousot

X.Contracts.dll
Only user provided contracts

‘«‘ s

A 4

M
v Can be fed to other
analyses where X is

Klnferr referenced
All the inf contracts

Warning & Detected errors

FIGURE 3 — My first project : Clousot Workflow & we would like to use inferred contracts outside
B too

Moreover, abstract interpretation allows the user to choose carefully the analysis precision,
so it could be possible to launch some very precise and time-consuming analyses on the system
DLLs that are often referenced, and then save the results once and for all.

22d project : the goal was to add class analyses to Clousot so as to be able to infer object
invariants in addition to method contracts (until then, Clousot only inferred method contracts).

2.1.3 Implementation

The entire CodeContracts project is written in C#. We will only cover the abstract interpreter
here in this report.

Reading MSIL code is achieved though the Microsoft CCI library (available on the internet).
The code structure is then abstracted for the analyzer to treat higher level objects.

Method analyses, which are independant and each use their own abstract domain, are se-
quentially executed. The analysis order is dictated by the method call graph constraints.

The project is separated into different modules independant from each other, and limitates
logic dependencies between the orthogonal parts of the implementation.

Let’s give us a quick overview of the scale of the project. The CodeContracts project is several
hundred of thousands lines of code, and Clousot alone is between 50 000 and 100 000 lines.

2.2 Inferred contracts

2.2.1 The setting

When he writes code, the programmer can write contracts by himself (such as what you
can see in Figure [5| further down). Tt is expected from him to give non trivial contracts to the

analyzer, ie. those too complex to be automatically inferred. Then the analyzer takes on the task
of automatically deducing as much contracts as possible to prove as much assertions as possible
(and thus avoid unnecessary warnings).

To get a better grasp of the order of magnitude we are dealing with, the number of inferred
contracts on a big-scale DLL (such as System.dll from the .NET framework) is as high as several
dozens of thousands (see exact figures in Figure |§[)

In this setting, we asked ourselves several questions on the inferred contracts :

1. How to store them for reuse in another analysis? That’s what we already discussed in
Figure

2. Are they all useful 7 In case some of them are not, we should delete them in order to speed
up the analysis.

3. Are they all valid 7 Of course, we don’t want to infer false statements.

Let’s see how we deal with these interrogations one after another.

2.2.2 Storing inferred contracts

Storing inferred contracts is not as easy as it may first seem. We don’t want to just store
them by themselves (as a string for example), we also want to capture their semantic meanings
so as not to have to re-analyze them when we re-import them.

Principle

The solution we chose is to get back to C# code : for each analyzed assembly, we generate
all the C# code of the assembly except that the body of each method only contains inferred
contracts (see Figure [5)).

Once we have this code, it is just a matter of compiling it with the usual compiler and you get
a DLL containing all the inferred contracts for free. Now, you can feed any analysis depending
on this specific assembly with this DLL and the contracts will be properly imported (see Figure

[A).

@ Infered contracts projectfile

One .cs file per class, with
inferred contracts in method
bodies

Usual compilation

X.nferred.Contracts.dll :_:

Contains all inferred contracts

Fed to other analyses

FIGURE 4 — Storing inferred contracts as C# code

Advantages and achievements

This approach, in addition to solving the initial problem, brings with it many other advantages
that are worth exploring.

First of all, the produced code is human readable and allows for graceful hand-editing. It
proves to be very useful, for instance in the aim of generating “contracts libraries” for system
DLLs, which is essential to the effectiveness of CodeContracts. Until then, those contracts libraries
had to be written by hand as C# code. Needless to say it was a long and cumbersome task. Now,
the skeleton of those libraries are already at hand and you only have to add the non-inferred
contracts you want, as shown on Figure [5

public class ProtectedProviderSettings : ConfigurationElement
‘ #region Object Invariants

ContractlnvariantMethod]
protected void InferredOCbjectInvariant ()
{

Contract.Invariant (this. propProviders != null):
$endregion

#region Methods and constructors
public ProtectedProviderSettings ()

act.Ensures (Contract.Result<System.Collections.Specialized.

act.Ensures (this. PropertyNameCollection != null):

Contract.Ensures (Contract.Result<System.Collections.S5pecialized.
#endregion
|E::te::_es and _:dexe:ﬂ

FIGURE 5 — Typical output of the OutputPrettyC# tool : the assembly skeleton including all
the contracts (and object invariants, cf. project 2) inferred during the analysis. Here we show a
sample coming from the analysis of System.Configuration.dll

Moreover, you get a semantic verification of the contracts basically for free (because it is
done by the C# compiler). It proved to be very useful because there are so many reasons why
a contract would not compile (violating some little forgotten C+# rules is surprisingly easy) that
you really have to take care to get it to actually compile. Thus, a compiling contract has high
probability of being genuinely wanted. That is what we experienced.

Last but not least, it allows iteration of the analysis. When you have the inferred contracts
stored somewhere, you can run the analysis again with that new information as input. However,
because of small problems in the Clousot implementation at the time of my internship we couldn’t
measure the efficiency of such an approach.

My work

To realize this project, we had to intercept the inferred contracts inside Clousot and “clean”
them. Independantly, I have coded a library allowing for valid and pretty C# output. In parti-
cular, it was of course used in this setting to output the C# code we wanted.

At the end of the day, everything has worked well. The biggest DLLs in the .NET framework
lead to a fully compiling generated code, without error, containing all the inferred contracts of
interest.

2.2.3 Contracts utility

As mentioned earlier, this approach is packed with a free semantic checking. This verification
was in fact the first “stress-test” for the contracts that Clousot generates. Until then, contracts
were used inside the analyzer and just output on the screen. There was no real way to check if
they really “meant” something.

We learned a lot from this approach.

.NET programming is definitely object-oriented. However, we found that the analyzer was
not always object-oriented in the way it handled some particular situations and we have thus
worked towards better using this fact.

The first thing that came out of the compilation tests was that the analysis inferred a good
proportion of useless contracts (which lead to compilation errors).

Typically, one could find in the body of some method a contract referring to the private field
of another class, which was inaccessible from there. Such a contract cannot be of any use because
this field will never be used in the method and thus it can be safely removed. Care has still to
be taken though because this contract could be of use in the internal analysis of the other class,
so it should not be totally removed.

This leads to a subtle distinction between contracts : some are “interface contracts”, ie. they
concern public fields and give information for other people wanting to use the object ; and some
others are “internal contracts” which should remain private to the declaring class and just allow
for more interface contracts inference.

The compilation of our generated C# code also allowed us to detect contracts which made
no sense simply because of typing errors. Mainly we ran through signed/unsigned issues and
more importantly arithmetic operations between booleans and integers (booleans being just 0
and 1 values in the MSIL at some places) or between enum and integers. These contracts did not
make sense or needed some little adjustments which have made the overall analysis more robust.

The compilation also enabled us to detect contracts that were not false but just trivial (a
field address is not null... That’s true but also always true, it is safe to skip it).

After all those improvements and filtering were implemented in Clousot, the inferred contracts
count dropped dramatically, leading to a substantial speedup in the analysis, as witness the
following figures :

System. System.
Deployment.dll Design.dll

System.

Configuration.dll System.dll

Avant | Aprés || Avant | Aprés || Avant | Aprés || Avant | Aprés
Temps d’analyse 2’507 1’307 20°40” | 18°30” 2’507 1’107 14°207 | 11207
Post-conditions 3397 1469 27149 | 13866 3287 1596 19458 | 10372
Pré-conditions 849 642 8349 7883 1323 924 11132 | 10603
Nb. de métodes 1921 15497 2212 12922

FIGURE 6 — Results : useless contracts are gone, the analysis is faster

Of course, the big deal is not to lower the contracts count, but to do so without losing deducing
power. And indeed, we could see that the number of proven assertions did not change after our
modifications.

2.2.4 Contracts soundness

As already mentioned, the static analyzer is based upon the abstract interpretation theory.
This theory guarantees that inferred contracts are sound. We might miss some because of a lack
of precision, but all what is inferred is fortunately valid.

However, practice is a little bit different : the analyzer implementation is human-made and
thus fatally has some bugs. How to detect them ?

These errors often only appear in very particular cases (because most common cases are
validated by the programmer when he does his testing). But the paradox is that on huge DLLs
where we could actually see those failures, there are too many contracts for anyone to eyeball
them.

Our solution of recompiling contracts has proved to be useful for detecting those errors. As
mentioned earlier, there are so many reasons for a contract not to compile that an error in the
analyzer is likely to lead to an uncompilable contract, which is thus automatically pin-pointed.
Of course, this is no rock-solid argument, but our approach really made us aware of some bugs
in the analyzer that we have then fixed.

The bugs were mainly about wrongly over-generalized preconditions and about wrong control
flow construction is some cases leading to some false contradictions.

2.3 Object invariants

The second part of my internship was about implementing some object analysis in Clousot.

Until then, Clousot only inferred contracts about methods and no object invariants. My
task was to add this functionality to the Clousot framework. I then used this environment to
implement a particular (and very basic) analysis.

2.3.1 Getting object invariants inference in Clousot

I will not get into the details of adding the object invariant facility into Clousot design, but
it is still interesting to mention an issue we ran into that we did not suspect would be that
important at first glance.

Memory footprint problem

To make an object analysis, you have to keep all the method analysis results available for
each method of the class you are considering.

If several analyses are simultaneously run, you thus have to keep in memory several abstract
states for each method until you launch the class analysis. The abstract states (one for each
used abstract domain) can prove to require big amounts of memory, even for reasonably large
methods.

It is clearly not feasible to run all the class analyses after all the methods have been examined,
because it would require to store all the results of each analysis on each method during the whole
execution — too much.

So we can think of an “on-the-fly” strategy : after the last method of a particular class has
been analyzed, then the class analysis can be run (and all the informations about those methods
can then be discarded).

But the method call graph put some constraints on the order of analysis. In practice, if you
don’t pay particular attention to the issue, the methods from a class can be run at unnecessary
distant times, forcing you to keep their analysis results longer than optimal.

On big DLLs containing thousands of classes, we measured that the number of open class
analyses at one time could go as high as 800 (and lead to Out Of Memory exceptions).

Solution

The analysis order had thus to be reorganized. A majority of methods don’t have mutual
constraints and there is thus plenty of room to do some improvements, especially by packing up
methods coming from the same class together.

To do so, starting with the method call graph G,,, we build a class call graph G, where nodes
are classes and an edge between ¢; and co means that a method of ¢; calls a method of ¢ (which
is no more than G,, quotiented by the relation m; ~ my <= class(my) = class(mz)).

Until then, the methods were analyzed according to the topological order of the strong com-
ponents of G,,, noted <,,. But the order inside those strong components was not defined.

Here, we make use of G. to pack methods from the same class together when G,,, allows it.

More precisely, we first look at the strong components of G, in the topological order, and
then we use <,, inside each of them to compute the analysis order. Thus, the time when we
need to store information about methods is dramatically reduced, and it is easily seen that the
constraints dictated by G,, are well respected.

Results

This approach does not have any perceptible impact on the execution time (we barely ask
more than the construction of G, along with a traversal and then some quick sorts according to
<m).

But the memory problem is now gone : on the same DLLs we experienced Out Of Memory
exceptions before, the maximal number of simultaneous class analyses has now dropped to 25
which has a reasonable memory footprint.

2.3.2 readonly fields analysis

The object invariants analysis that I implemented was based on the fact that, for .NET
languages supporting it (including C#), the readonly fields of a class can only be modified in
constructors.

Principle

Let C be a class and let (f;); denote its readonly fields (it is assumed that C has some,
otherwise the analysis doesn’t say anything). Let’s also assume that we are running a single
analysis which uses its personal abstract domain.

Now, let (C}); be the constructors of C and f; ; be the abstract state of field f; at the exit
point of C;. Then we can deduce a class invariant regarding f; :

Invi = |_| fi,j
J

Thus, we have a set (I/nT/Z)2 of object invariants for C.

This principle can then be applied independantly to the other analyses with their own abstract
domain.

10

Find fixpoint abstract states for readonly fields, if any

Join of all the abstract states (about readonly fields)

‘ Objec.riants

FIGURE 7 — Object invariants inference concerning readonly fields

-

Note here that the only informations we need concern constructors of the classes, so we can
spare memory space (we don’t even keep the informations about non-constructors and launch
the analysis right after all constructors of a class have been analyzed).

Results

The performance of this analysis are unsurprisingly good once the analysis order optimization
has been carried out, because it just asks for a few join operations.

However, we found out in practice that it does not infer that much invariants. Even on big
DLLs with thousands of classes, it barely infers more than 10 invariants or so.

There could be several explanations for that matter of fact, among which we think the most
likely are : the readonly field facility is not used a lot in system DLLs or the analyses run here
were not precise enough to infer things about them and/or the idioms used in conjunction with
readonly fields were too complicated to be analyzed in the first place.

One way to significantly improve the performance of this analysis would be to actually infer
the readonly property on fields instead of waiting for the programmer to provide it.

We did not really look deep into that. The interesting part really was to have an object
invariant analysis implemented in Clousot. The particular analysis we used here is just the first
step towards the usage of this new framework.

11

3 Discussions and conclusion

We had a quick look at the two projects I made during my internship at MSR.

The first one aimed at recompiling inferred contracts so as to reuse them and it lead to a
very valuable semantic checking on them. It actually was the first time that contracts could be
really examined.

There are undoutbly still some minor adjustments to make about C# outputting from MSIL
when new corner cases appear at usage. But the developed tool works properly even on the
biggest system DLLs and provides the user with out-of-the-box compiling C# code.

My second project was about introducing object invariants analysis in Clousot. After that
was done, I implemented a particular object analysis in this new framework.

The next step is now to implement some more sophisticated analyses in this framework which
will lead to better results and will improve the overall deductive power of Clousot.

12

	The internship
	Acknowledgements
	Microsoft Research
	My curriculum

	Scientific contents
	CodeContracts & Clousot
	The workflow
	My work in there
	Implementation

	Inferred contracts
	The setting
	Storing inferred contracts
	Contracts utility
	Contracts soundness

	Object invariants
	Getting object invariants inference in Clousot
	readonly fields analysis

	Discussions and conclusion

